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An Analysis of ABSTRIPS

Craig A. Knoblock
University of Southern California

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
t knoblock@isi.edu

Abstract

ABSTRIPS [Sacerdoti, 1974] was the first system to automate the construction of
abstraction hierarchies for planning. Despite the seminal nature of this work, the
method ABSTRIPS uses to construct abstraction hierarchies is only described in vague
terms, and there is no analysis of how the method works or when it will be effective.
This paper fills this gap and presents a reconstruction and analysis of the algorithm
used in ABSTRiPS. The analysis shows that the method for constructing abstractions
implicitly assumes that the preconditions that are determined to be details will be in-
dependent. In those cases where the independence assumption falls to hold, ABSTRIPS

can degrade the performance of the planner. The paper also compares the ABSTRIPS

approach to generating abstractions to the one used in ALPINE [Knoblock, 1990] and
describes how ALPINE avoids the problem that arises in ABSTRIPS.

1 Introduction

One approach to reducing searcb in planning is to exploit abstractions of a problem space
to plan hierarchically. A problem is first solved in an abstract space and then refined at

successively more detailed levels. The ABSTRIPS system [Sacerdoti, 1974J provided some
of the earliest work on abstraction in planning. ABSTRIPS was built on top of the STRIPS

planning system [Fikes and Nilsson, 1971] and would first construct an abstraction hierarchy
for a problem space and then use the abstractions for hierarchical planning. Hierarchical
planning was pioneered in GPS [Newell and Simon, 1972], but ABSTRIPS was the first system
that automated the construction of abstraction hierarchies.

In ABSTRIPS, the abstraction spaces are constructed by assigning criticalities, numbers
indicating relative difficulty, to the preconditions of each operator. The system uses these

V criticalities to plan abstractly. First, an abstract plan is found that satisfies only the precon-
ditions of the operators with the highest criticality values. The abstract plan is then refined

by considering the preconditions at the next level of criticality and inserting steps into the
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plan to achieve these preconditions. The process is repeated until the plan is expanded torI
OX the lowest level of criticality.

The work on ABSTRIPS is widely viewed as seminal work on abstraction in planning [Korf,
1987, Tenenberg, 1988]. Yet, to date there has been no detailed description or analysis of

4' the method used in ABSTRIPS for constructing abstraction hierarchies. In addition, recent
results presented in [Knoblock, 1991] indicate that the abstraction hierarchies generated by
ABSTRIPS actually degrade performance rather than improve it when used in the PRODIGY

problem solver [Minton et al., 1989, Carbonell et al., 1991]. This paper presents a detailed
analysis of how ABSTRIPS works. It also explains the apparent contradiction in that the
abstractions generated by ABSTRIPS worked well in the STRIPS system, yet produced poor
performance when used in PRODIGY.

The remainder of this paper is organized as follows. The next section presents a rational
reconstruction of the algorithm for generating abstractions and an analysis of how and when
this approach will work. The third section presents an example problem that illustrates a
shortcoming of the ABSTRIPS approach. The fourth section compares the approaches used
in ABSTRIPS and ALPINE [Knoblock, 1990, Knoblock, 1991] for generating abstractions and
shows how ALPINE avoids the problem that arises in ABSTRIPS. The fifth section presents
experimental results that compare ABSTRIPS' abstractions to ALPINE's in the PRODIGY
problem solver. The sixth section compares the criteria used for generating abstractions
in ABSTRIPS to the criteria used in other systems, and the last section summarizes the
findings presented in this paper. In addition, the Lisp code for the ABSTRIPS algorithm is
included in Appendix A, and the definition of the STRIPS robot planning domain is provided

el in Appendix B.

2 Algorithm and Analysis of ABSTRIPS

ABSTRIPS is given a definition of a problem space and a partial order of predicates, and it
forms abstract problem spaces by assigning criticalities to the preconditions of the operators.
According to [Sacerdoti, 1974], the criticalities are assigned as follows:

A predetermined (partial) ordering of all the predicates used in describing-
the problem domain was used to specify an order for examining the literals of
the precondition wffs of all the operators in the domain. First, all literals whose
truth value could not be changed by an operator in the domain were assigned
a maximum criticality value. Then, each remaining literal was examined in an
order determined by the partial ordering. If a short plan could be found to achieve
a literal from a state in which all previously processed literals were assumed to
be true, then the literal in question was said to be a detail and was assigned
a criticality equal to its rank in the partial ordering. If no such plan could be
found, the literal was assigned a criticality greater than the highest rank in the
partial order.

The crucial point left unspecified in the description of the algorithm is how the system
determines whether a given precondition can be achieved by a short plan. To understand
this point, I constructed a complete version of the algorithm that matches the description

2
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Sin the original paper and produces the same criticality assignments as those published on- ABSTRIPS. The core of the algorithm is presented in Table 2 and the complete program i-
C) provided in Appendix A. '&'t.e algorithm described below appears to býý quite close to the

original since it produces the same criticality assignments for the STRIPS domain, requires
4, the same axioms that ABSTRIPS required to produce these criticalities, and is quite simple.

The algorithm presented in Table 2 assigns a criticality value to a precondition of an
operator by attempting to prove that for any instantiation of the precondition, there exists
a sequence of operators that will achieve the precondition. It is unclear what was meant by
a siort plan in the description above. The algorithm presented here considers a short plan
to be an- nonrecursive sequence of operators.

The f "ction, assign-precond-crit, is given an operator and a precondition of that
operator avd >-qsigns a criticality to that precondition. If the precondition cannot be changed
by any operator it is static and is assigned a criticality of two plus the maximum value in the
partial order. if it cannot show that a plan exists to achieve the precondition it is assigned •
a criticality of ,;ne pius the maximum value in the partial order. If a plan does exist, it is
assigned a critic.0ity equal to its level in the partial order.

Before determining whether a plan exists, the function context is called first to determine
the context of the p-econdition. The context consists of the conditions that will hold at the
time the precondi':on arises as a goal. These conditions consist of the other preconditions of
the operator that aie higher in the partial order than the precondition under consideration,
any conditions that. can be derived from these conditions using the axioms, and any previous
context or conditions that held up to this point.

Given the context, the function plan-exists attempts to show that a plan will always
exist for achieving the given precondition. It first determines the set of relevant operators P
for achieving the precondition and then tests each operator to see if its preconditions will be
achievable in the given context. The algorithm avoids recursing infinitely by keeping a stack
of the operators under consideration and failing whenever it encounters an operator that is
already on the stack.

The function achievable determines whether a set of preconditions will be achievable
in the given context. To do this, the function attempts to show that for each of the pre-
conditions, the precondition either holds in the given context or a plan exists to achieve the
precondition. In the later case, the function plan-exists is called recui-sively on the precon-
dition, first updating the context and operator stack with the operator under consideration.

The essence of this approach is to determine whether a plan will always exist to achieve
a given precondition. If such a plan exists, the precondition is considered a detail and can
be separated from the more difficult aspects of the problem. Thus, the system automatically
produces only a three-level abstraction hierarchy, with the static literals at the top of the
hierarchy, the difficult to achieve literals next, and the details at the bottom., The user-
defined partial order is then used to partition the details into separate levels. 0

For the problems tried in the ABSTRIPý paper this algorithm for generating abstractions 0
appears to work very well. However, the algorithm assumes that the different preconditions -

or goal conditions will not interact with one another. This assumption arises because the -

k algorithm only considers each of the preconditions independently. In practice, a plan for
achieving a subgoal may interact with a plan for achieving another subgoal. Even in the

!Avail and/or
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function assign-precond-crit (precond,operator)

if precond is static
-then return(2 + maximum value in partial omlr') A
else

begin
context +- context(precond,operator,[]);
if not plan-exists (precond,context,operator)
then return(1 + maximum value in partial order)
else return(level of precond in partial order)
end

end

function context (goaloperatorprev-context)
begin
new-context 4- preconditions of operator higher than goal in the partial order;
derived-context +- conditions derived from axioms, goal, and new-context;
return(new-context U derived-context U prey-context)
end

function plan-exists (goal,contextstack)

relevant-ops 4- operators relevant to goal;

if there-exists op E relevant-ops such-that
begin

Spreconds •- preconditions of op; 0
and op ý stack;

achievable (preconds, context,op, stack)
end

then return(true)
else return(false)
end

function achievabl e (preconds ,con,.ext ,op,stack)

if forall pre E preconds
begin
nev-context .- context (pre,op, context);
new-stack 4- push(op,stack);

a_ pre E context;
plan-exists (pre,new-context ,new-stack)

endd
then return(true)
else returnCfalse)
end

Table 1: Algorithm for Assigning Criticalities

4
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STRIPS domain there are combinations of goal conditions where this type of interaction
occurs. The effect of such an interaction is that a precondition that appeared to be achievable
in the analysis, might not be achievable because the plan for achieving another goal could
interact with it.,

3 An Example Problem

Consider an example that illustrates the problem that can occur in ABSTRIPS when the in-
dependence assumption is violated. The problem is from the STRIPS robot planning domain
[Fikes and Nilsson, 1971] and was selected from the randomly generated problems used in
the experiments described later in this paper. This domain is defined in Appendix B.

The problem ;nvolves achieving the following conjunction of five goals:

(and (inroom a rooml)
(status door56 closed)
(status door12 closed)
(inroom robot room3)

( (inroom b room6)),

where the initial state for this problem is shown in Figure 1. The complete specification of
this problem is included in Appendix D of [Knoblock, 1991].

Rooml Room2 Room3 Room4
I I Robot

Door'12 Door23 Door34
Open L -__1 Open Open

I,, Door25 Door26I Door36
4 Closed Open Open

T1 DDorroo6 7

S Door56 Closed
Open I

[ Room5 I Room6 ! Room7

Figure 1: initial State for the Example Problem

The criticality assignments generated by ABSTRIPS for this problem domain are specified
in [Sacerdoti, 1974] and shown in Appendix B. ABSTRIPS assigns the static preconditions
the highest criticality, 6. It assigns the preconditions that cannot be achieved by a short plan
a criticality of 5 These preconditions include all of the inroom conditions and the status
and nextto preconditions of the operators for opening and closing doors. The status and
nextto precondit'ons of the remaining operators are shown to be details and are assigned
criticalities that correspond to their values in the partial order given to ABSTR!PS, which is

3 2 for the status preconditions and I for the nextto preconditions.

• • • •• • •5



Problem solving using this abstraction hierarchy proceeds as follows. Since ABSTRIPS
only drops preconditions, all the top-level goals are considered in the abstract space. The
system constructs an abstract plan to move box a into roomi, closes the door to the room,
and then moves the robot through the closed door in order to achieve the remaining goals.
When the system is planning at this abstraction level it ignores all preconditions involving
door status, so it does not notice that it will later have to open this door to make the plan
work. When the plan is refined to the next level of detail, the steps are added to open the
door before moving the robot through the door, deleting a condition that was achieved in
the abstract space. At this point the problem solver would need to either backtrack or insert
additional steps for closing the door again. The original ABSTRIPS system would not have
even noticed that it had violated the precondition, and wculd simply produce an incorrect
plan [Joslin and Roach, 1989, pg.100]. In the analysis used by ABSTRIPS, the door status
appeared to be a detail, but during planning considerable time can be wasted before it finally
backtracks to the correc. point in the search space and corrects the mistake.

4 Comparison with ALPINE

The ALPINE system [Knoblock, 1990, Knoblock, 1991] completely automates the generation
of abstraction hierarchies from the definition of a problem space. Each abstraction space in
a hierarchy is formed by dropping literals (atomic formulas) from the original problem space,
thus it abstracts the preconditions and effects of operators as well as the states and goals of
a problem space. ALPINE forms abstraction hierarchies based on the ordered monotonicity
property [Knoblock et al., 19911, which requires that the truth value of a literal introduced
at one level is not changed at a lower level. This property guarantees that the preconditions
that are achieved in an abstract plan will not be deleted (clobbered) while refining that plan.
To construct abstraction hierarchies with this property, ALPINE analyzes the preconditions
and effects of the operators to determine potential interactions. If a plan for achieving literal
C, can change the truth value of literal C2, then literal C1 cannot be in a lower abstraction
level than literal C2. The detailed algorithm is described in [Knoblock, 1991].

ALPINE's approach to generating abstrac'.ions differs from ABSTRIPS in several important
ways. First, ALPINE forms abstractions based on the ordered monotonicity property, while
ABSTRIPS forms abstractions by considering whether each precondition of each operator can
be achieved by a short plan. Second, ALPINE compl,'tely automates the construction of the
abstraction hierarchies using the definition of the problem space, while ABSTRIPS requires
an initial partial order on the predicates to form the abstraction hierarchy. Third, ALPINE
forms abstractions that are tailored to each problem, while ABSTRIPS constructs a single
abstraction hierarchy for the entire domr.... Fourth, ALPINE forms reduced models where
each level in the abstraction hierarchy is an abstraction of the original problem space, while
ABSTRIPS forms relaxed models where only the preconditions are dropped.

The abstraction hierarchies generated by each systerri for the example problem are shown
in Figure 2. As described earlier, ABSTRIPS uses the same four-level abstraction hierarchy for
the entire problem domain. The most abstract space consists of all the static preconditions
(the preconditions that cannot be changed), the second level consists of the preconditions
that cannot be achieved by a short plan. This includes all of the inroom preconditions, and

6
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connects 'connects door room room)

pushable (inroom box room) (pushable box)

status nextto (inroom robot room) (status door status)

status (nextto box door) (nextto box box)

nextto (nextto robot door) (nextto robot box)

( ABSTRIPS ALPINE

Figure 2: Abstraction Hierarchies Generated by ABSTRIPS and ALPINE

some of the nextto and status preconditions. The third level consists of the status pre-
( conditions that can be achieved by a short plan, and the fourth level contains the remaining

nextto conditions that can also be achieved by a short plan.
The abstraction hierarchy built by ALPINE for this problem consists of the three-level

abstraction hierarchy shown in Figure 2. (ALPINE builds finer-grained hierarchies by sep-
arating literals with the same predicate but different argument types.) The most abstract
space consists of all the static literals and the (inroom box room) literals. The next level
contains both the (inroom robot room) and the (status door status) literals. These
two sets of literals are placed at the same level in order to satisfy the ordered monotonicity
property since it may be necessary to get the robot into a particular room to open or close
a door. Finally, the last level contains the nextto literals for both the robot and the boxes.

Using ALPINE'S abstraction hierarchy to solve the example problem, a planner would
0 first generate a plan for moving the boxes into the appropriate rooms. At the next level it

would deal with the goals involving closing the doors and moving the robot. if it closed a
door and then tried to move the robot through the door, it would immediately notice the
interaction since these goals are considered at the same abstraction level. After producing
a plan at the intermediate level it would refine this plan into the ground space by inserting
the remaining details, which consists of the conditions involving nextto.

In constructing the abstraction hierarchy to solve this problem, ALPINE recognized the
potential interaction between the operator for achieving goals involving door status and the
operators for achieving the other top-level goals, and it created an abstraction hierarchy
where door status is not considered a detail. Given a different problem, for example, one
where the only goal is to get the robot into a particular room, ALPINE would recognize that
in that case door status is a detail and place it at a lower abstraction level.

5 Experimental Results

To illustrate the difference between ALPINE's and ABSTRIPS's abstractions, the use of these
abstractions are compared using the PRODIGY problem solver [Carbonell et al., 1991] in the
STRIPS domain. This is not a completely fair comparison because the abstraction hierarchies
generated by ABSTRIPS were intended to be used by the STRIPS problem solver. STRIPS
employed a best-first search instead of a depth-first search, so the problem of expanding an

7
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abstract plan that is then violated during the refinement of that plan would probably be
less costly. Nevertheless, the comparison emphasizes the difference between the abstraction

A hierarchies generated by ALPINE and ABSTRIPS and demonstrates the problem with the
approach used to generate abstractions in ABSTRIPS.

First consider the results on the example problem described earlier. Table 2 shows the
4' CPU time (in seconds), nodes searched, and solution length for each configuration. ALPINE

significantly reduces both the search and the solution length compaxed to PRODIGY. In
contrast ABSTRIPS takes almost six times longer than PRODIGY, although it does produce a
solution of the same length as ALPINE. Note that since ALPINE must construct an abstraction
hierarchy for each problem, the CPU times reported fcr ALPINE throughout this paper
include the time to construct an abstraction hierarchy.

Table 2: Performance on the Example Problem

System Time Nodes Length
Prodigy 14.5 259 25

Prodigy + Alpine 10.2 114 19

Prodigy + Abstrips 83.0 1,631 19

The graphs in Figure 3 compare the solution times and solution lengths of PRODIGY
without using abstraction, PRODIGY using the abstractions produced by ABSTRIPS, and

PRODIGY using the abstractions produced by ALPINE. Each configuration was run on 200
0 •randomly generated problems in the STRIPS robot planning domain. PRODIGY was run in

each configuration and given 600 CPU seconds to solve each of the problems. Out of the
200 problems, 197 of the problems were solvable in principle. The solution time graph in
Figure 3 shows the average solution times for the 197 solvable problems. The solution length
graph shows the average solution lengths on the 153 problems that were solved by all three
configurations. In both graphs the problems are ordered by the shortest solution found by
any of the configurations.

The graphs show that the use of ABSTRIPS' abstractions significantly degrades perfor-
mance, while ALPINE's abstractions improve performance over the basic PRODIGY system.
PRODIGY performs quite well on these problems even without abstraction. This is because
the problem solver only needs to search a small portion of the search space since most mis-
takes can be undone by adding additional steps. Thus, on problem-solving time PRODIGY
performed quite well, but it achieved this performance by trading solution quality. On the
hardest set of problems, PRODIGY produces solutions that were on average fifty percent
longer than ALPINE. In contrast, the use of ABSTRIPS' abstractions significantly increased
the problem solving time, although they did improve the quality of the solutions. The rea-
son for the poor performance using ABSTRIPS' abstractions is that the interactions between
different subgoals in a problem generated many redundant choice points, which resulted in
wasted effort in backtracking. In addition, the problems used in these experiments were

much larger than the ones used in the original experiments and as a result these problems

were much more likely to have interacting subproblems.
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Figure 3: Comparison of the Average Solution Times and Average Solution Lengths

6 Related Work

The purpose of abstraction in planning is to solve the more difficult aspects of a problem first
and then fill in the details. The general problem that arises in finding useful abstractions is
determining which parts of a problem are details. ABSTRIPS defined the details to be those
preconditions that are always achievable independent of the other subgoals in a problem.
Thus the abstractions generated by ABSTRIPS consider the difficulty in achieving individual
conditions, but do not take into account the potential interactions among different subgoals.
This section compares the criterion used by ABSTRIPS for constructing abstractions to other

z. closely related work.
PABLO [Christensen, 19911 is another system that generates abstractions for hierarchical

planning. It uses a technique called predicate relaxation to determine the number of steps
needed to achieve each predicate by partially evaluating the operators. This information is
then used to focus the problem solver on the part of the problem that requires the greatest

V• number of steps. The approach is quite similar to the one used by ABSTRIPS in that the
abstractions are based on how many steps (in the worst case) it will take to achieve a given
precondition instead of just whether or not a condition is always achievable. In is interesting
to note that PABLO will suffer from exactly the same problem as ABSTRIPS because the
predicate relaxation process does not consider interactions with plans for achieving other
subgoals. Thus, due to interactions between subplans, it may believe that a subgoal is
achievable when it is not, and it may underestimate the number of steps required to achieve

a subgoal.
As described earlier in this paper, ALPINE forms abstractions based on the ordered mono-

tonicity property. This property guarantees that any plan for achieving a condition ignored
at an abstract level will not add or delete a literal in a more abstract space. In effect, the
ordered monotonicity property partitions those conditions that interact with one another

9



and orders the partitioned sets of conditions in a way that minimizes the interactions among
them. While this property does consider the interactions between different goals, it does
not guarantee that the conditions ignored at an abstract level will be achievable. However,
neither ABSTRIPS or PABLO guarantee this property either since although they consider
whether a individual precondition is achievable, they do no, consider possible interactions
that may preclude a solution.

Bacchus and Yang [1991] identified a stronger property called the downward refinement
property, which states that if a problem is solvable then any abstract sclution must have
a refinement. Thus, if a solution to a problem exists, then the condit:,,ns ignored at the
abstract level will be achievable. While clearly this is a desirable property, the problem is
that this property can only be guaranteed in very restricted cases.

7 Conclusion

This paper presented a rational reconstruction of the algorithm used in ABSTRIPS for gen-
erating abstraction hierarchies. ABSTRIPS assigns criticalities to preconditions of operators
by separating out those preconditions that can be shown to be always achievable. These
preconditions are the details and achievement of them is delayed until the more difficult
parts of the problem are solved. The flaw in this approach is that evaluating whether a
precondition can be achieved is done in isolation from the rest of a problem. As shown in
this paper, this can lead to performance that is worse than no abstraction at all when there
are interactions between plans for achieving different subgoals. From this we can conclude
that the problem spaces in which ABSTRIPS will be effective are those in which there are
preconditions that can be shown to be achievable and those preconditions can be achieved
independently.

The approach to generating abstractions in ABSTRIPS was compared to the approach
in ALPINE. ALPINE produces abstraction hierarchies that have the ordered monotonicity
property, which guarantees that the goals and subgoals that arise in the process of refining
an abstract plan will not interact with the conditions already achieved in a more abstract
level. Unlike ABSTRIPS, ALPINE considers all of the potential interactions in a problem space
and avoids precisely the type of interactions that lead to poor performance in ABSTRIPS.

As a result, ALPINE was able to improve the performance of PRODIGY, while ABSTRIPS

degraded it.

10
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A Program for Assigning Criticalities

;Top-level function for assigning criticalities.

(defun abstrips (&optional Cops *OPERATORS*))
(load-operators ops)
(calc-max-value-in-po)
(assign-criticalities ops))

Process each operator in the problem space.

(defun load-operators Cops)
Ccond ((null ops))

(t (load-operator Ccaar ops)(cdar ops))

(load-operators (cdr ops)))))

Store preconds and effects on property list.0
(defun, load-operator (name body)

(cond ((null body))
Ct (setf (get name (caar body))

(cadar body))

(load-operator name Ccdr body)))))

Maximum value in the partial order.

(defun calc-max-value-ifl-po C)
Csetq *MAX-VALUE-IN-PO*

* ( ~(apply #'max (mapcar #'cdr *PARTIAL-ORDER*))))* *

,.Assign criticalities to each operator.
(defun assign-criticalities (&optional Cops *OPERATORS*))

(cond ((null ops))

C (t (format t "-%-%-.a" (caar ops))

(assign-op-crits Ccaar ops)Cpreconds Ccaar ops)))

Cassign-criticalities Ccdr ops)))))

Assign criticalities to each precondition.
(defun assign-op-crits (op preconds)

(cond ((null preconds))
(t (format t "1. -a -a~

(assign-precond-crit (car preconds) op)

(car preconds))

Cassign-op-crits op C~cdr preconds)))))



; Assigns criticality based on whether the precondition is
; atatic and whether or not a plan always exists to achieve the A)
; precondition.
(defun assign-precond-crit (precond operator)

(cond ((static precond) 4,
(+ 2 *MAX-VALUE-IN-PO*))

((not (plan-exists
precond
(context precond (preconds operator) nil) 3
(relevant-ops precond)
(list operator)))

(+ I *MAX-VALUE-IN-PO*))
(t (level-in-po precond))))

; A plan exists to achieve a goal if the preconditions of any of
; the relevant operators are achievable. Maintains a stack of operators
; under consideration to avoid looping.
(defun plan-exists (goal context relevant-ops op-stack)

(cond ((null relevant-ops) nil)
((member (car relevant-ops) op-stack)
(plan-exists goal context

(cdr relevant-ops)
op-stack))

((achievable (preconds (car relevant-ops))
context
(car relevant-ops)
op-stack))

(t (plan-exists goal context
(cdr relevant-ops)
op-stack)))) T P

; A set of preconditions is achievable if each precondition is
; either true in the given context or it can be shown that a plan exists
; to achieve it.
(defun achievable (preconds context relevant-op op-stack) 6

(cond ((null preconds))
((or (member (car preconds) context :test U'matches)

(plan-exists (car preconds)
(context (car preconds)

(preconds relevant-op)
context)

(relevant-ops (car preconds))
(cons relevant-op op-stack)))

(achievable (cdr preconds) context
relevant-op op-stack))))

12
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Given both a goal and the preconditions of an operator that
; are relevant to achieving that goal, the context consists of all those
;preconditions that are higher in the partial order than the goal, the

S; ~conditions that in turn can be derived from those preconditions, and ,
,! ; the conditions in the previous context in which the goal arose.

4(defun context (goal preconds prey-context)
r(let new-context (higher-in-po (level-in-po goal) t

preconds) ))

t (append (derive-context goal new-context)
new-context

prev-context) ) t)

Level in the partial order of a t iven r oal.
(defun level-in-po (ctnd)

(cdr (asset (car cond) *partial-order*)))

;Finds conditions higher in the partial order than the given
S~; criticality.

(defun higher-in-po (crit list)

(cond ((null list) nil)
((<= (level-in-po (car list)) crit)
(higher-in-po crit (cdr list)))

(t (cons (car list)
(higher-in-po crit (cdr list))))))

; The derived context consists of those conditions that can be
; derived from the negation of the goal (the negation of the goal must
; hold or it wouldn't be a goal) and from the given context.
(defun derive-context (goal context)

(append (derive (list 'not goal))
(derived-context context.)))

; A condition can be derived from the context if it can be
derived from an atomic formula in the context.

(defun derived-context (context)
t (cond ((null context) nil)

(t (append (derive (car context))
(derived-context (cdr context))))))

; Attempts to match a condition against the left-hand side of
; the axioms. If it matches, the right-hand side of the axiom holds.
(defun derive (cond)

(cdr (assoc cond *AXIOMS* :test V'matches)))

1
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; A precondition is static if there are no operators relevant to I
; achieving it.
(defun static (condition) p

(cond ((null (relevant-ops condition)))))

; An operator is relevant to achieving a goal if it is in the
; primary effects of the operator.
(defun relevant-ops (condition)

(cdr (assoc condition *PRIMARY* :test V'matches)))

; Two literals match if the constants match and the variables
; can be bound appropriately. Note that no substitution list is
; maintained, so this function could incorrectly determine that two
; literal match.
(defun matches (condl cond2)

(cond ((and (null condl)(null cond2)))
((or (null condl)(null cond2)) nil)
((listp (car condl))
(if (matches (car condl)(car cond2))

(matches (cdr condi) (cdr cond2))))
((and (not (is-variable (car condi)))

(not (is-variable (car cond2)))
(not (eq (car condl)(car cond2))))

nil)
(t (matches (cdr condl)(cdr cond2))))) 4

; Returns a list of preconditions of an operator.
(defun preconds (operator)

(let ((preconds (get operator 'preconds)))
(if (eq 'and (car preconds))

(cdr preconds)
preconds)))

; A variable begins with a
(defun is-variable (atm)

(and (symbolp atm)
(eql '#\< (char (symbol-name atm) 0))))

14
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4 B Strips Robot Planning Domain
; An equivalent version of this domain first appeared in [Sacerdoti 1974]. *

; Initial partial order of the predicates.
(defparameter *PARTIAL-ORDER*

'((type . 4)(connects . 4)(locinroom . 4)(pushable . 4)
(inroom 3)
(status . 2) 0
(nextto 1)))

; Axioms that state invariant properties of the domain. The first
; axiom states that if something is pushable, thern it is of type object.
; The second axiom states that if a door is not open, then it is closed. •
(defparameter *AXIOMS*

'(((pushable <x>)(type <x> object))
((not (status <x> open))(status <x> closed))))

Specifies which operators have a literal as a primary add.
(defparameter *PRIMARY*

'(((nextto robot <object>) . (GOTO-BOX
GOTO-DOOR))

((at robot <loc> <loc>) . (GOTO-LOC))
(((nextto <object> <object>) (PUSH-BOX

PUSH-TO-DOOR))
((at <object> <lec> <loc>) (PUSH-TO-LOC))
((inroom robot <room>) (GO-THRU-DOOR))
((inroom <object> <room>) . (PUSH-THRU-DOOR))
((status <door> open) . (OPEN-DOOR))
((status <door> closed) (CLOSE-DOOR))))

; The operators are defined in the PRODIGY language [Minton et
; al, 1989], so the syntax differs slightly from the original. The
; criticalities assigned by ABSTRIPS are shown in curly braces.

S(defparameter *OPERATORS* '(

(GOTO-BOX (params (<bx>))
(preconds (and (type <bx> object) ;{6}

(inroom <bx> <rx>) ;{5}
C' (inroom robot <rx>))) ;{5}

(effects ((del (at robot <locl> <Ioc2>))
(del (nextto robot <objl>))
(add (nextto robot <bx>)))))

15
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0 ' (GOTO-DOOR (pa~rams (<dx>))
(preconds (and k.t;ype <dx> door) ;f6)

(inroom robot <rx>) ;{5}
(connects (dx> (rx> (ry>))) ;f6}

4 (effects ((del (at robot (loci> cloc2>))
(del (nextto robot <obj 1>))
(add (nextto robot <dx>)))))

(GOTO-LOC (params (<x> <y>))
(preconds (and 'kinroom robot (rx>) ;IS}

(locinroom Wx <y> Crx>)) ;f6}
(effects ((del (at robot (loci) (loc2>))

(del (nextto robot (obj 1>))
(add (at robot W> (y)))))

(PUSH-BOX (paranis (<bx> <by>))
(preconds (and (type (by> object) ;f6)

(pushable <bx>) ;{6)
(nextto robot <bx>) ;fl)1}
(inroom <bx> <rx>) ;{5)
(inroom (by> <rx>) ;{5}
(inroom robot <rx>))) ;15}

(effects ((del (at robot (loci> <loc2>))
(del (nextto robot <obji>))

0 (del (at <bx> (loc3> (loc4>))
(del (nextto <bx> <obj2>))
(del (nextto (obj3> (bx>))
(add (nextto (by> (bx>))
(add (nextto <bx> <by>)
(add (nextto robot (bx>)))))

(PUSH-TO-DOOR (params (<bx> (dx>))
(preconds (and (pushable <bx>) ;f6}

(type <dx> door) ;f6)
(nextto r-obot (bx>) ;{1}
(inroom robot <rx>) ;15}
(inroom <bx> <rx>) ;{5}
(connects (dx> <rx> <ry>))) ;f6}

(affects ((del (at robot Clodl> (loc2>))
(del (nextto robot <obji>))I
(del (at (bx> (loc3> <loc4>)
(del (nextto <bx> <obj2>))
(del (nextto <obj3> (bx>))
(add (nextto (bx> <dx>))
(add (nextto robot <bx>)))))

16



(PUSH-TO-LOC (params (Cbx> <x> <y>))

(preconds (and (pushable <bx>) ;f6)
(risxtto robot <bx>) ;fl)
(inroom robot <rx>) ;{5}
(inroom <bx> <rx>) ;{5}
(locinroom <x> <y> -.rx>)') ;f6}

(effects ((del (at robot <loci> <loc2>))
(del (nextto robot (obji>)
(del (at <bx> (loc3> <loc4>))
(del (nextto <bx> <obj2>))
(del (nextto <obj3> (bx>))
(add (at (bx> Wx <y>))
(add (nextto robot <bx>)))))

(GO-THRU-DOOR (params (<dx> <rx>))
(preconds (and (type <dx> dvor) ;{6j

(type <rx> room) ;f6)
(status <dx> open) ;f2)
(inroom robot <ry>) ;{5}

((connects <dx> <ry> <rx>)) ;f6)}
(effects ((del (at robot <loci> <loc2>)

(del (nextto robot <objl1)))
(del (inroom robot <ry>))
(add (inroom robot <rx>)))

(PUSH-THRU-DOOR (params (<bx> <dx> <rx>)) 0
(preconds (and (pushable <bx>) ;{6)

(type cdx> door) ;{6)
(type <rw> room) ;{6)

( (status <dx> open) ;{2}
(nextto <bx> <dx>) ;fl)}
(nextto robot <bx>) ;f1}

(inroom <bx> <ry>) ;15}
(inroom robot <ry>) ;15)
(connects <dx> <ry> <rx>))' ;{6}

((effects ((del. (at robot <loci> <loc2W))
(del (nextto robot <objI>)
(del (at <bx> <loc3> <loc4>)
(del (nextto <bx> <obj2W)
(del' (nextto <obj3> <bx>))
(del (inroom robot cry>))
(del (inroom <bx> <ry>))
(add (inroom <bx> <rx>))
(add (inroom robot <rx;'))
(add (nextto robot <bx>)))))
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(OPEN-DOOR (params (<dx>))
(prsconds (and (type <dx> door) ;{6}

(status <dx> closed) ;{5J
(nextto robot (dx>))) ;{S)

(effects ((del (status <dx> closed))
(add (status <dx> open)))))

(CLOSE-DOOR (params (<dx>)) 0
(preconds (and (type <dx> door) ;{6}

(status <dx> open) ;{5}
(nextto robot <dx>))) ;{5)

(effects ((del (status <dx> open))

(add (status <dx> closed)))
0
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